Journal of Approximation Theory 118, 175-187 (2002)
doi:10.1006/jath.2002.3714

Constants of Strong Unicity of Minimal Projections onto some
Two-Dimensional Subspaces of /(%)

O.M. Martinov

Department of Mathematics Analysis, Murmansk Teachers Training School, 183038,
Murmansk, ul. Kap. Jegorow, d. 15, Russia
E-mail: galina.kolesnikova@mstu.edu.ru

Communicated by E. Ward Cheney

Received June 15, 2001; accepted in revised form June 26, 2002

In this paper the constants of strong unicity of minimal projections onto some two-
dimensional subspaces in /&) will be calculated. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let X be a normed space and let Y be a linear subspace of X. A bounded
linear operator 7 : X — Y is called a projection if ny = yfor any y € Y. The
set of all projections going from X onto Y will be denoted by n(X, Y). Set
Y, X)=inf{||n|]|:m € n(X,Y)}. A projection my is minimal if ||7|| =
(Y, X). This projection 7 is called strongly unique if there is k € (0; 1] such
that for any 7 € n(X, Y),

[Imo]| + Kl — mol| < |-
The study of existence and unicity of minimal projections is related to the
study of best approximation.

Let X:lgg) and let Y =Y, ,, where Y, » Clgé) is a subspace of
codimension two. Then for any 7 € n(lg), Y,2),

My pX = X — of (x) = fg(x),

where o € 1&2), pe 15,’;), f and ¢ are two linear functionals defined on I@,
and

fl)=g(f) =1, f(B)=g(x)=0. (1)
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If moreover f~1(0) = {x € IV | f(x) = X1, fixi =0}, g71(0) = {x € /%] g(x)
=", ¢gix; =0} are hyperplanes in I(OC"), then we can write Y, , =
f/71'(0)Ng~'(0). The norms of projections n and m — m, calculated by
formulas

n
Izl = max Ti,  where T; = > 185 — i — Bigil
<i< =

and
n
I = mol| = max B;,  where Bi=_ |(o - A4V + (B = B)gl-
Isn j:l

For projection ©y we have
mpx = x = 2”f (x) = fg(x).

For more complete information about this subject the reader is referred to
[1-13]. In [2,5,7-13] a complete characterization and unicity of minimal
projections on hyperplanes and subspaces of codimension two in spaces /|,
¢o and their finite-dimensional analogues lf”), 1% are presented. The strongly
unique minimal projections on hyperplanes in 1% and l](") and the same onto
two-dimensional subspaces of 1% are considered in [1,3-6].

In this paper we calculate the constants of strong unicity for some two-
dimensional subspaces in léi).

2. THE CONSTANTS OF STRONG UNICITY
Let functionals f and g be of the form

f=0,sr0), g=1(0,0,0,1), (2)

where parameters s > 0,7 > 0. Then conditions (1) can be rewritten in the
form

fla) =0y + sop +ro3 = 1, gla) =a4 =0,
f(B) =By +sPp,+1p3 =0, g(B) =Ps=1.

By Theorem 3.3 from [6] it is easy to deduce the following (see also [5,
Theorem 2.4.6, p. 73; 4, Theorem 2.5]):
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LEMMA 2.1.

Let Y» Cl

be a subspace of codzmenszon two, Y, =
F7H0) N g1 (0), where f and g are functzonals (2), and let nw be a minimal

pr0]eclzon on subspace Y. Then (1) H%[;H —4”, where Q=1 +( +r—
D=1+ (s4+r—1D(s+r), if s+r—1>0, r<s<1 2) ||7rw|| =1,
l—s—r=0, r<s.

Now we can prove the main result of this paper. First note that in [3,

Theorem II1.3.1, p. 105] the strong unlclty constant has been estimated for
minimal projections onto hyperplanes in l

THEOREM 2.2. Let projection ni?g and functionals f, g be as in Lemma
2.1. Then the projection nl(yo;{ is strongly unique (it follows from [4, Theorems
3.1, 3.3, 3.4] (see also [5, Theorems 2.5.1, 2.5.2, 2.5.3, pp. 75-78])) and the
constant k of strong unicity is equal to

r(12—s+r)(s+r—1) ifstr_10
(I=8)"4+r(1+8))(1+s+7)

r<s<l
and

1—

oS if1l—s—r>0, r<s.

l+s+r

Proof. Let
s+r—1>0, r<s<l. (3)

In this case we have

Ty =1 —on| +sloa| + rloa| + [Bi|Z 1+ (s +r = Dlou| + [B4]
> 14+ (s+r—1)ay,

loa] + |1 = s + rloa| + |2 =1+ (1 — s+ r)[oa| + |
=14 (1 —s+ru,

los| 4+ slos| + |1 — ros| + |Bs| =1+ (1

+5 = 7r)|os[ +[Bs]
> 14+ (1+s5—r)as,

= |0(4| —|—S|OC4‘ + V|O(4| + |1 — ﬁ4| =0.
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Now we find a§°>, /350) such that T; = ||ni0[),|| (i=1,2,3). Let ﬁ =0
(i=1,2,3). It is obtained above that (xf:)) =0, ﬁgo) =1. To find o ©
(i=1,2,3) consider a system of equations

Lt (s+r— Do =4,

1+(1—s+r)oc<>:%,
1+(1—|—s—r)oc<3>:4”.

From this system we get

OC(O):(l—S+V)(1+S—V) O((O):(1+S_r)(s+r—l)
1 Q b 2 Q 3

0 (I =s+r)(s+r—1)
3 Q .

It is easy to show that oc,@) (i = 1,2,3) satisfy the condition f(a) =

0

o,

Calculate the norm of the operator 7 — @

m

4
0 0 0
Im— 5l = max B;=max 3 |(o — o) + (B — £, g

J=1
_ max 4 (I=s+r)(l+s—7r) : o .
a (;( 0 )J(]"’(ﬁl ﬁl )gj7
- (Its=ns+r=1\, o goy |,
]Z:; (Otz Q )ﬁ+(ﬁ2 ﬁz )J]7
4 (I=s+r)(s+r—1) . )
]Z:; <a3 0 )J(j+(ﬁ ﬁz )g,,
= max al—(l_s+r)Q<1+s_r)(1+s+r)+|/31|;
o = IO sk 415
fx3—(1_S+F)Q<S+r_1)’(1+s+r)+|ﬁ3|}‘
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Put 0<os <(1_‘LQ(‘H'"_”, Bi=0 (i=1,2,3). Moreover, let

(I=s+r(l+4+s—r) (I+s—r)(s+r—1)
, oy > .
0 0
Applying conditions (4) it is easy to show that if a3 < ocgo), then the inequality
o 480 > 1 —roy” is satisfied.
Put also 1 + (s+7— 1)y =1+ (1 — s+ r)op, hence

4)

oy >

s+r—1

R (5)
By condition f(a) = 1 we get
oy +sop =1 — ros. (6)

Applying conditions (5) and (6) find

s+
P

s+ r—1
P
where P = (1 —s)* +r(1 + ).

o (1 = raz), o (1 = raz),

For these values of o; and f3; we get

By = (1_S+F)Q(1+S_r) (1+s+7)
_r( —s+r)(1+s+r)((1—s+r)(s+r— 1)—oc3>
P 0 ’

B, = 062(1+S_V)Q(S+r_l)‘(l+s+r)
:r(s+r—l)(l+s+r)((l—s+r)(s+r— 1)—a3>
P 0 ’

B3:(1+S+r)((1—s+r)(s+r—1)_a3)

0

The inequality By =B, is equivalent to 1 —s+r>=s+r—1, which
immediately follows from (3). Now we prove that B; > B;. We have

r(l—=s+r)(l+s+7)
P 3

l+s+r>
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hence
(1 —s)% +2rs > 1%, (7)

Since (1 — )2 +2rs>2rs>2r* > 12, the last inequality is satisfied. Conse-
quently, max; ¢;<3 B; = Bs.
Moreover, T) = T2—1+M(l—rm3)7 T5=1+(14+s5—r)as.

(I=s+r)(s+r—1)
[

Since inequality 75<7; is equivalent to o3< we obtain

maxXj<;<3 T Tl

Now we will estimate k from above. From the inequality ||7z ﬂ||—|—

r(1=s+r)(s+r—1)
(14-s+r)P
show that k € (0, 1]. Obviously, k& > 0 if conditions (3) are satisfied. The

condition k<1 follows from the two inequalities "= ‘+’><1 and 1<

The first inequality is equivalent to (7). The second inequality is trivial.

kB3 < T\, by elementary calculations, we may get k< . Now we

To show that k = % is a maximal value of the constant of a

strong unicity we prove that inequality
0 0
11+ e ma {1 — 2”1 (1+ 5+ 1) + |6}
<max{l + (s+r—Dou| + [fil; 1+ (1 = s+ 7)o
+ 1Bals T+ (145 —r)fos] + [Bs]} (8)

satisfies for any o;, f5;.
Consider three cases.
(1) Let max; B; = B;. Denote o) — oc(10> =g.
(a) Suppose that g >0. Then (8) can be rewritten in the
form ||ni‘?;||+k<m<1+s+r>+|ﬁl|><1+<s+r—1>|oc1|+|ﬁ1| hence 45—
l+k(et(1+s+r)+|B[)<(s+r— 1)(81 —&—w) + |By], then k(e
(L+s+r)+[Bil)<(s+r— 1Dz + ]
The last inequality is equivalent to ke (1 +s+r)<(s+r— 1)g
and k|f;|<|p;|, which immediately follow from (7) and k<1 accordingly.

(b) Now assume that & <0. To prove (8) we note that max{l +
(s+r— Dl + |8 14+ (1 —s+ 1)l + [Bals 1+ (1 4+ —Blos| + 18]}
=M1+ (1 =s+r)|oa] +|fa]) + 43(1 + (1 + 5 —r)|os| + |f3]), where 4, >0,
320, L+ 13=1.

In this case (8) is equivalent to
7S+ k(1 + s+ P)len [ <Aa(1+ (1= s+ )]oal) + 23(1+ (1 + 5 = r)]os])
9)
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and
kB < A2l Bo| + 231 Bs]- (10)

To prove these inequalities put /y =, /3 = ;7==. By condition
1—s+r)(1+s—r)
R

Jo+ 73 =1 we find that u = ,where R= (s —r)? +s+7.
By condition f(a) = 1, (9) can be rewritten in the form

131+ k(1 + s+ r)ler | < T+ p(1 — o), hence [[aly]| + k(1 + 5+ r)[ei| <
1 —|—,u(1 . OC(10) . 81)7 then (s+r71)Q(l+sfr) _’_r(s+1§71)|81|<1+Isé—r((s+rél)R + |81|>.

The last inequality is equivalent to w<%, which follows from s +

r—1<1+s—r and rR<P. The first inequality is equivalent to condition
r< 1. The second inequality is equivalent to (1 +r — s)2 >0. Thus, inequality
(9) is proved.

Now we prove (10). By condition f(ff) = 0 we get that §;, = —sf, — rfs,
hence |B,]|<s|f,| + r|B]. Instead of inequality (10) we prove that

s(l4+s5—r) r(1 —s+r)
k(s|fal + rlps1) < |Bal + 1851,
R R
which follows from two inequalities k|| <IE=E(B,| and k|B;| <1=5L( ;).

The last inequalities immediately follow from s+r—1<l4+s—r,s+r—
I<l+4+s+r 1—s+r<l+s+rand rR<P. Inequality (10) is proved too.

(2) Let max; B; = B,. Denote o, — ocg)) = &.
(a) Suppose that & >=0. Inequality (8) can be rewritten in
the form [|m || + k(ea(1 +5+7) + [Bo]) <1+ (1 — s+ r)|a] + |Bs], hence

1t k(ea(1 s+ 7) + Bal) < (1= 54+ 1) (o2 + U)ol then
k(ex(1+s+7) + |Bo]) (1 —s+7r)ex + B

The last inequality is equivalent to kex(1 +s+r)<(1 —s+7r)ey
and k|f,|<|f,|. The first inequality is equivalent to “S+—Iﬁ_l)< 1, which
immediately follows from (1 —s)*+ (2 —r)>0. The second inequality is
equivalent to k<1.

(b) Now assume that & <0. To prove (8), we use the inequality
max{l+(s+r—Doa|[+[fi]; 1+ (1 =s+r)loaf+[ff; T+ (1+s5—r)o
HBs} =2 (14 (s +r = Dou| + |B1]) + 43(1 + (1 + 5 — r)|os| + |Bs]), where
A1=0, 2320, 1| + 43 = 1. Inequality (8) in this case follows from

3]+ (1 + 5+ )lea <A (1+ (s + 7 = Do ]) + 31 + (1 +5 = 1)]os]),

kiBal < A1lBy] + 231Bs- (12)
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To prove these inequalities put Z; =, 43 =7 J:g_r. By condition
A1+ 23 =1 find that n= m, where T = (1 —7r)? —|—s(1+ r). By
condition f(x) =1, (11) can be rewritten in the form ||n ﬁ|| +k(1+s

+r)|e2| <1+ n(l —saz), hence |\7T,/5H+k(1+s+ )|az|<l+n(l—sa<20)

+|ea|), then (17S+")él+kr>+r(l }f” |ea| <= r({s AQH) +s]ez|). The last

inequality we rewrite in the form M<M. This inequality follows

from 1 —s+r<1+s—r and rT<sP. The first inequality is equivalent to
condition r<s. The second inequality is equivalent to (s + r — 1)*>0. Thus,
(11) is proved.

Now we prove (12). From condition f(f) =0 we get that s, = —f; —
B3, hence s|f,| <|B;| + r|B3|. Instead of inequality (12) we prove that

l+s—r ris+r—1)
T 1Bl + T

k
;(|ﬁ]| +r|ps]) < B3,

which follows from two inequalities k|f, | <W|ﬁl | and k|B;] <S(H7Tr71>|ﬁ3|.
The last inequalities immediately follow from 1 —s+r<l+s—r, s+
r—l<l+s+r 1 —s+r<l+s+randrT<sP.Inequality (12) is proved
too.
(3) Let max; B; = B;. Denote o3 — ocg()) = &3.

(a) Suppose that e3> 0. Inequality (8) can be rewritten in the form
1)l + ke(es(1+ 5+ 1) + [B) < T+ (145 — r)|as| +|B5], hence 4 — 1 +k
(es(1+5+1) + Bs)) < (145 — 1) (g3 + =) 415 then k(m( +s
+r) + B3 < (1 45— r)es + [Bs].

The last inequality follows from kez(1+s+r)<(l+s5—7)e;
and k|f;|<|B;]. The first inequality is equivalent to (7). The second
inequality is equivalent to condition A <1.

(b) Now assume that ¢3 <0. To prove (8), we use the inequality
max{1l + (s+7r— Dlog| +18,]; 1+ (1 —s+7r)|aa| +[B]; 1+ (1 45— r)|os]
B3} =4 (1 + (s + 7= Dlou| + 1)) + 22(1 + (1 — s +7)|oa| + |f5]), where
=0, 1L,=0, L1 +1, =1

Inequality (8) in this case follows from

7411+ k(1 45+ r)es| <A1 (L4 (s 47 = Dloa]) + Z2(1 + (1 = s+ r)]aal),

(13)
k| Bs| < 21|y | + 22|Bal- (14)
To prove these inequalities put 1) ==,/ = =45 By condition

/11+A2—1W6ﬁnd'[haty:w'
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By condition f(«) =1, (13) can be rewritten in the form ||niog|| + k(1+
s+ r)|es] <1+ (1 — raz), hence ||7tx0/;|| +h(l4+s4r)e| <491 = roc<30> +
leal), then L=t fey| <L(UESDE 4 pes]), that s Jles|<Bles| Thus, in-
equality (13) is proved.

Now we prove (14). From the condition f(f) =0 we get that rff; =
—PB1 — 5P, hence r|f;] <|B,| + 5|B,|. Instead of inequality (14) we prove that

s+r s(s+r—1)

‘Bl' P |ﬁ2L

k
;(|ﬁ1|+s|ﬁz|)<

which follows from the two inequalities k|f| <M |8,] and k|B,| <w
|B>|. The last inequalities follow from the two trivial conditions s+ r —
I<l4+s+r 1—s+r<1+s+r Inequality (14) is proved.

The first requirement of Theorem 2.2. is proved too.

Now let

1—s5s—r=0, r<s.

In th1s case we have ago =1, oc(o) <0) = ocf‘o (() ﬁ =0 (i=1,2,3),
%

[34 = 1. Calculate the norm of the operator T — /)
= =0l = max, B,

—max<2a1—1f+ﬁ.g, Z|oczf,+m Zlaafﬂrﬁsgjl )

=max{[o — 1|(1 +s5+7) + Iﬁll; o2 (1 +S+V) +1Bal;

loa|(1+ s +1) + B3]}

Let O<a; <1, 0,>0, 035>0, ;=0 (i=1,2,3). Put also 1+ (1 —s+
r)op =1+ (1 4+ s —r)as, hence

1l—s+r

a3:1+s—r

0. (15)

By condition f(«) = 1 and (15) find

1+s—r 1—s+r
dzZT(l—Oﬂl), o3 ZTU — o).

For these values of «; and f3; we get

By =l —1|(1+s+r)=0+s+r)(1—o0),
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(I+s=r)(1+s5+7r)
R

By =|w|(l+s+7r) = (I —oy),

(I—=s+r(l+4+s+r)

B3=|O€3‘(1+S+V)= (1—0(1).

The inequality B,>B; is equivalent to 1+s—r>1—s+r, which
immediately follows from condition s>r. The inequality B,>B; is
equivalent to 1 <=, hence (s — r)? +2r<1. Since s+ r<1 it is sufficient
to prove (s — r)* 4 2r<s + r. From the last inequality we have (s — r)* <s —
r, which immediately follows from s—r<1 and s>r. Consequently,
max;<i<3 B = Ba.

Moreover, T1 =1+ (s+r— Doy <1, Th=T3=1 +%(1—a1)
>1, hence max,¢;<3 T; = T».

Now we will estimate & from the above. From the inequality 1 + kB, <75

we easily get k <{=+. Obviously, k € (0, 1].

To show that k = }:ij is a maximal value of the constant of a strong

unicity we prove that inequality
l—s+r

+
l+s+r
loa|(T+s+7) + |fals loal(1+s+7) + B}

max{log — 1|(1 +5+7r) + |f;

smax{l + (s+r—Dfoua| +[Bi; 1T+ (1 —s+7r)oaf +|f;
Lt (U4 s = r)os| + [Bsl} (16)

satisfies for any «;, f3;.
Consider three cases.

(1) Let max; B; = B;.
To prove (16) it is sufficient to show that

I —s+r
1 +mmax{|“1 = (T +s+7r)+ B}

smax{l + (1 —s+r)foa| + s 14+ (1 +s—r)as|+ [ (17)

Now we note that

loeg — 1| = |so + ros| <s|on| + rlos], (18)
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IB1] = | = 5Py — rB3| <s|Ba] + 7(Bsl, (19)
max{l + (1 —s+7)|ea| + |Bo]; 1+ (1 +s5—71)los|+ [Bs]}
=o(1+ (1 —=s+r)|o|+[8])

+ (14 (1+5—r)|os| + |B3]), where 1, + 43 = 1.

Inequality (17) follows from

L+ (T =s+ ) = 1<A(+ (1 =s+r)foa]) + 23 (1 + (145 — ) os])

(20)

l—s+r
—_— <A A . 21
1+S+r|ﬁl| 2|Bal + 2315 (21)
(l—s+r)(1+x—r).

Let, also as above, 4, =
Then, by (18), we get

where u =

—__ru
H—r’ B3 = T R

Aa(l+ (1 =s+r)|oa]) + A3(1+ (1 4+5—7r)|os])

= 1+ u(sloa| + rlas]) =1 + wlog — 1.

Thus, to prove (20) it is sufficient to show that 1 4 (1 — s+ r)|o; —
1|<1 + pley — 1]. The last inequality is equivalent to (s — r)* + 2r<1, which
is proved above.

Now we prove (21). By (19) we show that

l—s+r s(1+s—7) r(1—s+r)
T 1y OBl riBsh < =——%—1B] +7|ﬁ3|
The last inequality follows from
l—s+r 1+s
22
14+s+r 1Bl < |,32| (22)
l—s+r -5 -|- r
1Bl <———1Bsl. (23)

T4+s+r
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Inequality (22) follows from 1 —s+r<1+4+s—r and R<1+s+r.

The first inequality is equivalent to r<s. The second inequality is equivalent
2
to (s—r)<l.

Inequality (23) is equivalent to R<1 4 s+ r.
(2) Let max; B; = B;.
It is sufficient to prove that

1+ {2 (Joo| (T4 5+ 1) + |o]) <

L4 (1 = s+7)|ea| + |Bs], hence {2, |<|f,|, then k<1.

1+s+r
(3) Let max; B; = Bs.

In this case it is sufficient to prove that

l—s+r

oy (sl s )+ BD ST+ (Lts =)ol + [Bs].

The last inequality follows from (1 —s+r)|os|<(1 +s—7)|os| and

k|f;]| <|Ps]- The first inequality is equivalent to r<s. The second inequality

is

2

3.

4.

equivalent to k< 1. The proof is complete.
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